The 2008 Winners

… of the Albert Lasker Basic Medical Research Award are Victor Ambros, David Baulcombe, and Gary Ruvkun.  These scientists are pioneers in the field of small RNAs, and have helped dissect the process in animals and plants.  Some snippets from The Lasker Foundation announcement:

The 2008 Albert Lasker Award for Basic Medical Research honors three scientists who discovered an unanticipated world of tiny RNAs that regulate gene activity in plants and animals. Victor R. Ambros (University of Massachusetts Medical School, Worcester) and Gary B. Ruvkun (Massachusetts General Hospital, Boston, Harvard Medical School) unearthed the first example of this type of molecule in animals and demonstrated how the RNAs turn off genes whose activities are crucial for development. David C. Baulcombe (University of Cambridge) established that small RNAs silence genes in plants as well, thus catalyzing discoveries of many such RNAs in a wide range of living things. His findings led to the identification of the biochemical machinery that unifies numerous processes by which small RNAs govern gene activity.

Ambros, Baulcombe, and Ruvkun did not set out to unveil small regulatory RNAs. Ambros and Ruvkun were studying how the worm Caenorhabditis elegans develops from a newly hatched larva into an adult. Baulcombe, in a seemingly unrelated line of inquiry, was probing how plants defend themselves against viruses. All three investigators possessed the open mindedness, wisdom, and experimental finesse to entertain the possibility—and then verify—that tiny RNAs could perform momentous feats. Their work has led to the realization that these molecules are pivotal regulators of normal physiology as well as disease.

A few paragraphs later:

Across the Atlantic, David Baulcombe, then of the Sainsbury Laboratory in Norwich, UK, was studying how plants resist viruses. When he and others added to viral-infected plants unusual versions of viral genes, the mRNA copies of the normal genes as well as the newly introduced ones disappeared. Similarly, experimentally added non-viral genes suppressed activity of plant genes that contained similar sequences. Baulcombe proposed that such gene silencing occurs when RNAs embrace target mRNA—through typical Watson-Crick base-pairing—and promote destruction of the mRNA or interfere with its translation into protein. However, no one could find such RNAs.

Baulcombe reasoned that the predicted RNAs might have eluded researchers because the molecules were shorter than anyone imagined and thus, experiments had not been designed to detect them. In 1999, he and a postdoctoral fellow in his laboratory, Andrew Hamilton, devised a hunt specifically for small RNAs. They added test genes to plants and found 25-nt long RNAs that matched; furthermore, these small RNAs appeared only under conditions in which target mRNA activity was shut off. The stunning similarity in size between the plant and worm RNAs suggested that small regulatory RNAs exist in many organisms. Furthermore, it hinted at the presence of cellular machinery that dedicates itself to creating these precisely sized molecules and then uses them to quash gene activity.

Readers are encouraged to read the paper by Hamilton and Baulcombe that started to reveal the true scope of the RNA Underworld.  And another paper from Baulcombe’s group that ties in an underlying theme of this blog to the subject of small RNAs and silencing.  As always, enjoy.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: